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Analysis of the separability of plate height into overload and 
intrinsic contributions using the kinetic model of non-linear 
chromatography 

ABSTRACT 

In developing optimization strategies for praparative-scale chromatography it is very convenient. if 
no1 entirely valid, to the represent overall peak broadening in terms of the sum of two distinct, independent 
contributions to the plate height: that portion due to hand broadening under linear chromatographic 

conditions and that due to the effect of mass overload. The kinetic model of non-linear clution chromato- 
graphy is used to demonstrate that this separation of terms is a reasonable approximation under a wide 
range of chromatographic conditions and to define the limits of this approximation. 

INTRODUCTION 

In their seminal work on the optimization of sample throughput in preparative 
chromatography. Knox and Pyper [I] analyzed the effect of sample overload on peak 
width in terms of two distinctly different and assumed independent contributions to 
the plate height. For the present purposes, the first factor will be termed the intrinsic 
(Hint) contribution. This corresponds to the height equivalent to a theoretical plate 
for a column operating under perfectly linear isotherm conditions. The second contri- 
bution, that due to isotherm broadening, Hi,,, results from overloading the isotherm 
by injection of a negligibly small volume of solution containing an excessively large 
amount of solute. Knox and Pyper [I] wrote an equation equivalent to 

H = Hint + Hiso (1) 

Their justification for the decomposition of the total plate height into these two types 
of terms was based on the prior theoretical work of Haarhoff and Van der Linde [2] 
and the experimental work of De Jong et al. [3]. The peak-shape equation developed 
by Haarhoff and Van der Linde [2] was based on the assumption that the mobile and 
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stationary phase solutes are in perfect equilibrium and that broadening under linear 
conditions, i.e., at very low sample load, is due only to axial diffusion and eddy 
dispersion processes. Additionally, a parabolic isotherm was assumed to make the 
mathematics tractable, i.e. the relationship between the mobile (c) and stationary 
phase (q) solute concentrations was taken as 

q = al + a2C + a3C2 (2) 

Under conditions where the volume injected per se does not broaden the peak, 
the concentration-time relationship derived by Haarhoff and Van der Linde [2] can 
be expressed as 

c -= 
CO 

Jp(1 + k’) 

xf TT YCok’ 

exp - 

(3) 

where P = Daxt,/L2 (dimensionless dispersion coefficient); i = t/to (dimensionless 
time); k’ = klcco (thermodynamic k’); Y = - l/k’ (d2qidC’2)c,o; Co = (moles of 
solute injected)/(dead volume); D,, is the axial dispersion coefficient, t, is the column 
dead time and L is the column length. In the limit of a very small number of moles of 
solute, i.e., under linear isotherm conditions, the above equation takes on the much 
simpler Gaussian form: 

c 1 -= co 2,/%(1 + k’) 
. exp - (4 

with the dimensionless plate height given by 

Hint,disp = zp (5) 

P is directly related to D,,, which is formally equivalent to the spreading by pure axial 
molecular diffusion, which in turn is formally inversely dependent on flow-rate. 
Therefore, eqn. 5 is only an approximate representation of the overall intrinsic plate- 
height behavior under overload conditions. However, physically D,, is a dispersion 
coefficient which is coupled to the linear velocity. 21 [i.e., D:,, = fltr)]. Thus. 

Daxto s(u) p=---=- 
L2 ML 

Therefore. P has a complicated dependence on the linear velocity, and eqn. 5 is a 
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reasonable approximation of the band broadening under linear chromatographic 
conditions. 

Recently, the solution to a very different model of non-linear elution chromato- 
graphy was presented. Based on the work of Thomas [4], Heister and Vermuelen [5] 
and Arnold et al. [6,7], a solution was obtained to the non-linear boundary value 
problem in which the rate of transfer of solute between the phases is taken as the sole 
band-broadening process under linear conditions [8]. That is, interphase equilibrium 
is not assumed, rather the solute concentrations in the mobile and stationary phases 

were assumed to be related by 

z = k,(So - W’ - k,q (6) 

where S, is the concentration of binding sites (M; same units as q). The rate constants 
k, (lmol- ‘s- ‘) and kd (s- ‘) are “lumped” rate parameters corresponding to the net 
rate constants of solute adsorption and solute desorption. 

In order to make the problem mathematically tractable, dispersion was as- 
sumed to be negligible (Dax=O). One advantage of this particular theoretical ap- 
proach is that a Langmuir isotherm is retained. This physically more realistic iso- 
therm, in comparison with eqn. 2, allows this model to be used for higher degrees of 
column overload than the equilibrium model using a parabolic isotherm [9]. The 
solution for an impulse injection of sample is [8] 

C 1 - exp( - yKCO) [yfi Zr(2yX/G) + &_\*)I exp[ -y(_r + k’)] 
-= 
Co ;‘KCO 1 - T(yk’, 7~‘) [ 1 - exp( - yKCo)] i 

(7) 

where23 - t/t,, - 1; 1) z kdto (dimensionless rate parameter); k’ = (ka/kd)Soc (thermo- 
dynamic k’); K - k,/k,; Co = (moles of solute injected)/(column dead volume). 

In the above set of definitions, S,,e is the maximum adsorption capacity of the 
column. In eqn. 7, II is a first-order modified Bessel function of the first kind, and the 
T-function is a Bessel function integral: 

u 

T(u,v) = ehr s e-'Io(fi) dr 

0 

(8) 

in which I, is the zeroth-order Bessel function of the first kind. The T-function acts as 
a “switching” function which produces the skew in the peak profile when the column 
is overloaded. 

In the limit of a very small number of moles of sample, i.e., linear isotherm 
conditions, eqn. 7 takes on a much simpler form: 
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This result is mathematically identical with the Giddings-Eyring first-order stochastic 
model of chromatography [lo]. The dimensionless plate height corresponding to this 
equation is 

2k’ k’ u .- 
Hint = (1 + k’)‘y = 2(1 + k’)2 kdL 

(10) 

Eqn. 10 is the usual result for a plate height resulting from resistance to interphase 
equilibrium originating in the stationary phase under linear chromatographic 
(KC, = 0) conditions. 

The separability of the total plate height into intrinsic and isothermal contribu- 
tions is commonly used in theoretical treatments of preparative chromatography 
[ 1 l-l 31. However, the justification for this separability thus far is based solely on the 
Haarhoff-Van der Linde model [2]. As the conditions for the validity of the Haar- 
hoff-Van der Linde [2] and the kinetic models are in complete opposition, i.e., one is 
an axial dispersion-equilibrium model and the other is based solely on slow kinetics, 
we felt that it would be of considerable importance to determine whether and under 
what conditions the non-linear kinetic equation (eqn. 7) would lead to the same 
separation of plate height contribution shown in eqn. 1. 

COMPUTATIONS 

The dimensionless plate heights were obtained from 

where nrl and r& are the first normalized and second normalized centralized statisti- 
cal moments, respectively. The moments were computed for concentration-time pro- 
files generated using eqn. 7 such that 75 evenly spaced points were taken on each side 
of the maxima. Integrations were performed using Simpson’s l/3 rule. 

For the reversed-phase chromatographic simulations, k’ was varied between 1 
and 10, y was varied from 100 to 1000 and KC, was varied from 0 to 0.1. For 
high-performance affinity chromatography (HPAC), k’ was 25,~ was varied from 4 to 
40 and KC,, was varied from 0 to 2.0. 

RESULTS AND DISCUSSION 

At the outset of this work is was not at all clear to us that the separation of plate 
height as shown in eqn. 1 would be possible. Indeed, we were surprised that eqn. 1 had 
been given much credence at all [ 1 l-l 31. In essence, our concern was as follows: the 
extent of peak broadening due to overload must depend on the local solute concentra- 
tion averaged over the entire column. Obviously the local concentration under linear 
chromatographic conditions depends on both axial dispersion and broadening due to 
slow interphase transfer. Consequently, the intrinsic and isotherm broadening should 
be strongly coupled effects for overloaded columns, such that the contribution from 
isotherm broadening effects would diminish as the intrinsic broadening increased. 
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Despite this argument, we find that eqn. 1 is a surprisingly good approximation 
both for high-performance reversed-phase and affinity chromatographic conditions. 
The expected coupling between the intrinsic and isotherm broadening was observed, 
but was sufficiently small that it would generally be easily overwhelmed by experi- 
mental uncertainties in real chromatographic data. 

Reversed-phase chrorna tograph?* 
The range of the model parameters (k’, KC, and y) used in the computations 

here was based on the values observed in experimental studies of small uncharged 
solutes in preparative reversed-phase chromatography [9]. In that study, 3-phenyl- 
propanol was studied from linear chromatographic conditions (KC, = 0.0) to “mod- 
erate” column overload conditions (KC, = 0.1) [9]. 

In the kinetic model of non-linear chromatography, axial dispersion is assumed 
to be negligible and band broadening under linear chromatographic conditions is 
described solely by y_ the dimensionless rate parameter. The magnitude of this rate 
parameter results from the combined effects of slow solute desorption ad slow in- 
terphase mass transfer. The effects of these two mechanisms are combined in the 
“lumped” desorption rate constant. In reversed-phase chromatography, the kinetics 
of solute desorption at the surface are fairly fast. Therefore, the “lumped” desorption 
rate constant reflects the effect of mass transfer, which is independent of k’ and, if 
resistance to mass transfer resides in the stationary phase, it will be essentially inde- 
pendant of flow-rate. Therefore, kd can be considered to be constant, and so the 
dimensionless rate parameter, y, is directly related to the dead time of the column, to, 
or indirectly to the linear velocity. Thus, instead of the traditional H versus linear 
velocity plot, H verws l/7; will used. 

Fig. 1 shows a series of plots of H vs. 1,‘~ for the range of overload conditions 
previously studied [9] at k’ values of 1, 3 and 10. At all values of k’ the plots are 
qualitatively similar. For the case of zero overload (KC,=O). which corresponds to 
Hint in eqn. 1, the plot is exactly linear in accord with eqn. 10, and passes through the 
origin at 11~ = 0. As the column becomes slightly overloaded (KC, = 0.02) the plot of 
H vs. l/y appears to translate upwards. Close inspection of the plots for KC, = 0.02 
reveals a slight curvature at low l,$ (i.e., low linear velocity). However, for higher 
degrees of overload this curvature is more gradual and less distinct. Experimentally it 
would be difficult to discern any curvature or change in slope given the expected 
random error in the measurement of H. 

Thus all of the plots are roughly parallel and show an increase in the intercept at 
1 /y = 0 as the degree of overload increases. This is the qualitative behavior predicted 
by eqn. 1. The overload effect acts as a flow-rate-independent contribution to the 
overall H in these pseudo-Van Deemter plots. 

In order to obtain a clearer view of the overload term, the computed Hint based 
on eqn. 9 was subtracted from the total H values shown in Fig. 1: 

Hiso = H - Hint (eqn. 9) (12) 

The results are summarized in Fig. 2. If Hiso were truly independent of the intrinsic 
broadening effects, then these plots should have a slope of zero. It is evident that Hiso 
does depend on the linear velocity (l/y) and thus the separation of terms shown in 
eqn. 1 can not be perfect. As the intrinsic band broadening in the column increases 
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decreases with increasing k’. This trend is observed at constant KC’, because I??; 

increases more rapidly than m; with increasing k’. The net result of these two oppos- 
ing processes is a decrease in Hiso with increasing k’. However. in any experimental 
study in which the number of moles injected is held constant, KC, would not be 
constant but rather would increase linearly with increasing k’. The effect of this more 
realistic situation is given in Fig. 3, where it is shown that for a constant solute 
concentration given by a constant value of KC,, k’, Hiso increases with increasing k’. 
This is intuitively what one would expect. 

In high-performance affinity chromatography (HPAC), the low density of bind- 
ing sites can result in overloading of the column under even analytical conditions and 
the strong binding constants between the immobilized ligand and the solute result in 
column efficiencies far below those associated with reversed-phase HPLC. Thus 
HPAC provides a distinctly different test of the separability of the plate height under 
non-linear chromatographic conditions from the preparative reversed-phase HPLC 
case discussed above. 

To test the validity of the separation of plate height shown in eqn. 1 under 
HPAC conditions, H KY. II plots were calculated using conditions previously observed 
for the retention of p-nitrophenyl-a-D-mannopyranoside on a silica-bound concana- 
valin A affinity column [8]. One very approximate assumption that has been made is 
that the affinity medium is homogeneous, i.e., all sites have the same dissociation rate 
constant, kd, and thus the observed kd is independent of the amount injected. Under 
these conditions l/j! is proportional to linear velocity, II, for a constant k’. Fig. 4 
shows the variation of (A) the total plate height and (B) Hiso with l/y for k’ = 25. The 
plots in Fig. 4 display similar behavior to that observed in Figs. 1 and 2 despite the 
large differences in the parameter ranges between the two cases. Again there is evi- 
dence of significant coupling between the intrinsic band broadening and that caused 
by the overloading of the isotherm. However, the effect of the coupling is such that 
Hiso would in all likelihood appear constant in an experimental study of preparative 
HPAC. 
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Fig. 3. Effect of k’ on the Hiq,, w. l/j dependence for a constant level of column overload under preparative 
reversed-phase conditions. KC,,::k’ is constant at 0.01 for the three plots. 
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Fig. 4. Plate-height dependence under high-perl’ormance allinity chromatographic conditions. k’ = 25: ;’ = 
440: KC, = (a:~) 0.0: (0) 0.5: (L) 1.0: (A) I.5 and (Ll) 2.0. (A) Total plate height H vs. 1 ‘:I; (B) !I,*,, I:?. 

1 ;‘. 

CONCLUSIONS 

The kinetic model of non-linear chromatography has been used to test the 
validity of the separation of the total plate height observed in preparative chromato- 
graphy into intrinsic and isotherm contributions. H WI’SMS II plots were generated 

using physico-chemical parameters typical of both high-performance reversed-phase 
and affinity chromatography. These plots indicate that regardless of the mode of 
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chromatography, the intrinsic and isotherm contributions to the plate height are 
coupled, such that increases in the intrinsic band broadening on the column will 
reduce the band broadening due to the isotherm overload. However, it was found that 
the degree of this coupling is sufficiently small that in most instances the two contri- 
butions could be considered independent. 

Under conditions of extreme overload the peak width is dominated by the 
isotherm broadening effect and thus eqn. 1 will appear to be observed as Hi,, will be 
much larger than Hint. 
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